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COMPUTATIONALMODELING of mecha-
nical behavior during solidification is becoming
more important. Thermal and microstructural
simulations alone are insufficient to predict the
quality of the final product that is desired by
the casting industry. Accurate calculation of dis-
placements, strains, and stresses during the cast-
ing process is needed to predict residual stress
and distortion and defects such as the formation
of cracks such as hot tears. It also helps predict
porosity and segregation. As computing power
and software tools for computational mechanics
advance, it is becoming increasingly possible to
perform useful mechanical analysis of castings
and these important related behaviors.
The thermomechanical analysis of castings pre-

sents a formidable challenge for many reasons:

� Many interacting physical phenomena are
involved in stress-strain formation. Stress
arises primarily from the mismatch of strains
caused by large temperature gradients and
depends on the time- and microstructure-
dependent inelastic flow of the material.

� Predicting distortions and residual stresses in
cast products requires calculation of the his-
tory of the cast product and its environment
over huge temperature intervals. This makes
the mechanical problem highly nonlinear,
involving liquid solid interaction and com-
plex constitutive equations. Even identifying
the numerous metallurgical parameters
involved in those relations is a daunting task.

� The coupling between the thermal and the
mechanical problems is an additional diffi-
culty. This coupling comes from the mechani-
cal interaction between the casting and the
mold components, through gap formation or
the buildupof contact pressure, locallymodify-
ing the heat exchange. This adds some com-
plexity to the nonlinear heat transfer resolution.

� Accounting for the mold and its interaction
with the casting makes the problem multido-
main, usually involving numerous deform-
able components with coupled interactions.

� Cast parts usually have very complex three-
dimensional shapes, which puts great demands

on the interface between CAD design and the
mechanical solvers and on computational
resources.

� The important length scales range from
micrometers (dendrite arm shapes) to tens
of meters (metallurgical length of a continu-
ous caster), with similarly huge order-of-
magnitude range in time scales.

This article summarizes some of the issues and
approaches in performing computational analy-
ses of mechanical behavior, distortion, and hot
tearing during solidification. The governing
equations are presented first, followed by a brief
description of the methods used to solve them,
and a few examples of recent applications in
shape castings and continuous casting.

Governing Equations

The modeling of mechanical behavior req-
uires solution of 1) the equilibrium or mome-
ntum equations relating force and stress, 2)
the constitutive equations relating stress and
strain, and 3) compatibility equations relating
strain and displacement. This is because the
boundary conditions specify either force or dis-
placement at different boundary regions of the
domain O:

u ¼ u
_

on @�u

sn ¼ T
_

on @�T ðEq 1Þ
where u_ are prescribed displacements on bound-

ary surface portion @Ou, and T
_

are boundary
surface forces or “tractions” on portion @OT.
The next sections first present the equilibrium
and compatibility equations and then introduce
constitutive equations for the different material
states during solidification.
Equilibrium and Compatibility Equations.

At any time and location in the solidifying
material, the conservation of force (steady-state
equilibrium) or momentum (transient condi-
tions) can be expressed by:

r � sþ rg� r
dv

dt
¼ 0 (Eq 2)

where s is the stress tensor, r is the density,
g denotes gravity, v is the velocity field, and
d/dt denotes the total (particular) time deriva-
tion. Stress can be further split into the deviatoric
stress tensor and the pressure field. The differ-
ent approaches for simplifying and solving
these equations are discussed in the section
“Implementation Issues.”
Once the material has solidified, the internal

and gravity forces dominate, so the inertia
terms in Eq 2 can be neglected. Furthermore,
the strains that dominate thermomechanical
behavior during solidification are on the order
of only a few percent, otherwise cracks will
form. With small gradients of spatial displace-
ment, ru = @u/@x, and the compatibility equa-
tions simplify to (Ref 1):

« ¼ 1

2
ruþ ðruÞT

� �
(Eq 3)

where « is the strain tensor and u is the dis-
placement vector. This small-strain assumption
simplifies the analysis considerably. The com-
patibility equations can also be expressed as
a rate formulation, where strains become strain
rates, and displacements become velocities.
This formulation is more convenient for a tran-
sient computation with time integration involv-
ing fluid flow and/or large deformation.
In casting analysis, the cast material may be

in the liquid, mushy, or solid state. Each of
these states has different constitutive behavior,
as discussed in the next three sections.
Liquid-State Constitutive Models. Metallic

alloys generally behave as Newtonian fluids.
Including thermal dilatation effects, the consti-
tutive equation can be expressed as:

_« ¼ 1

2ml
s� 1

3r
dr
dt

I (Eq 4)

The strain-rate tensor _« is split into two compo-
nents: a mechanical part, which varies linearly
with the deviatoric stress tensor s, and a thermal
part. In this equation, ml is the dynamic viscos-
ity of the liquid, r is the density, and I is the
identity tensor. Taking the trace of this expres-
sion, tr _« ¼ r � v, the mass conservation equa-
tion is recovered:
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dr
dt

þ rr � v ¼ @r
@t

þr � ðrvÞ ¼ 0 (Eq 5)

In casting processes, the liquid flow may be
turbulent, even after mold filling. This may
occur because of buoyancy forces or forced
convection such as in jets coming out of the
nozzle outlets in continuous casting processes.
The most accurate approach, direct numerical
simulation, generally is not feasible for indus-
trial processes, owing to their complex-shaped
domains and high turbulence. To compute just
the large-scale flow features, turbulence models
are used that increase the liquid viscosity
according to different models of the small-scale
phenomena. These models include the simple
“mixing-length” models, the two-equation
models such as k-e, and large eddy simulation
(LES) models, which have been compared with
each other and with measurements of continu-
ous casting (Ref 2–4).
Mushy-State Constitutive Models. Metallic

alloys in the mushy state are two-phase liquid-
solid media. Their mechanical response depends
greatly on the local microstructural evolution,
which involves several complex physical phe-
nomena. An accurate description of these phe-
nomena is useful for studying hot tearing or
macrosegregation. Knowledge of the liquid flow
in the mushy zone is necessary to calculate the
transport of chemical species (alloying ele-
ments) (Ref 5). Knowledge of the deformation
of the solid phase is important when it affects
liquid flow in the mushy zone by “sponge-
effects” (Ref 6). In such cases, two-phase
models must be used. Starting from microscopic
models describing the intrinsic behavior of the
liquid phase and the solid phase, spatial averag-
ing procedures must be developed to express the
behavior of the compressible solid continuum
and of the liquid phase that flows through it
(Ref 7–9).
If a detailed description is not really needed,

such as in the analysis of residual stresses and
distortions, the mushy state can be approxi-
mated as a single continuum that behaves as a
non-Newtonian (i.e., viscoplastic) fluid, accord-
ing to Eq 6 to 8. Thus, the liquid phase is not
distinguished from the solid phase, and the indi-
vidual dendrites and grain boundaries are not
resolved.

_« ¼ _«vp þ _«th (Eq 6)

_«vp ¼ 3

2K
ð _«eqÞ1�ms (Eq 7)

_«th ¼ � 1

3r
dr
dt

I (Eq 8)

K is the viscoplastic consistency and m the strain-

rate sensitivity. Denoting seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
sijsij

q
the

von Mises equivalent stress scalar, and

_eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
_evpij _e

vp
ij

q
the von Mises equivalent

strain-rate scalar, Eq 7 yields the well-known
power law: seq ¼ Kð _eeqÞm . Note that the pre-
ceding Newtonian liquid model is actually
a particular case of this non-Newtonian one:

Eq 4 can be derived from Eq 6, 7, and 8 taking
m = 1 and K = 3ml. The solidification shrinkage
is included in Eq 8: writing r = gs rS + gl rL
in the solidification interval (rS, rL densities
at the solidus and liquidus temperatures, respec-
tively, gs, gl volume fractions of solid and liq-
uid, respectively), the thermal strain rate is
defined as:

tr_eth ¼� 1

r
dr
dt

¼ � 1

r
ðrS � rLÞ

dgs
dt

� rL � rS
rL

dgs
dt (Eq 9)

Solid-State Constitutive Models. In the
solid state, metallic alloys can be modeled
either as elastic-plastic or elastic-viscoplastic
materials. In the latter class of models, one of
the simpler models is expressed as follows,
but it should be mentioned that a lot of models
of different complexity can be found in the lit-
erature (Ref 10, 11).

_« ¼ _«el þ _«in þ _«th (Eq 10)

_«el ¼ 1þ n
E

_s� n
E
trð _sÞIþ _T

@

@T

1þ n
E

� �
s

� _T
@

@T

n
E

� �
trðsÞI ðEq 11Þ

_«in ¼ 3

2seq

seq � s0

K

D E1=m

s (Eq 12)

_«th ¼ � 1

3r
dr
dt

I (Eq 13)

The strain-rate tensor _« is split into an elastic
component, an inelastic (nonreversible) compo-
nent, and a thermal component. Equation 11 is
the hypoelastic Hooke’s law, where E is
Young’s modulus, n the Poisson’s coefficient,
and _s a time derivative of the stress tensor s.
Equation 12 gives the relation between the

inelastic strain-rate tensor _«in and the stress
deviator, s, in which s0 denotes the scalar static
yield stress, below which no inelastic deforma-
tion occurs (the expression between brackets is
set to 0 when it is negative). In these equations,
the temperature dependency of all the involved
variables should be considered. The effect of
strain hardening may appear in such a model
by the increase of both the static yield stress
s0 and the plastic consistency K with the accu-
mulated inelastic strain eeq, or with another
state variable that is representative of the mate-
rial structure. The corresponding scalar equa-
tion relating stress and inelastic strain-rate von
Mises invariants is:

seq ¼ s0 þKð _eeqÞm (Eq 14)

Inserting this into Eq 12 simplifies it to:

_«in ¼ 3 _eeq
2seq

s; or; in incremental form;

d«in ¼ 3deeq
2seq

s ðEq 15Þ
Although metallic alloys show a significant

strain-rate sensitivity at high temperature, they
are often modeled in the literature using elas-
tic-plastic models, neglecting this important
effect. In this case, Eq 15 still holds, but the
flow stress is independent of the strain rate. It
may depend on the accumulated plastic strain
because of strain hardening.

Implementation Issues. One of the major
difficulties in the thermomechanical analysis
of casting processes is the concurrent presence
of liquid, mushy, and solid regions that move
with time as solidification progresses. Several
different strategies have been developed,
according to the process and model objectives:

� A first strategy consists in extracting the
solidified regions of the casting domain
based on the thermal analysis results. Then,
a small-strain thermomechanical analysis is
carried out on just this solid subdomain,
using a standard solid-state constitutive
model. Besides difficulties with the extrac-
tion process, especially when the solidified
regions have complex unconnected shapes,
this method may have numerical problems
with the application of the liquid hydrostatic
pressure onto the new internal boundary of
the solidified region. However, this simple
strategy is very convenient for many practi-
cal problems, especially when the solidifica-
tion front is stationary, such as the primary
cooling of continuous casting of aluminum
(Ref 12) and steel (Ref 13, 14). For transient
problems, such as the prediction of residual
stress and shape (butt-curl) during startup
of the aluminum DC continuous casting pro-
cess, the domain can be extended in time by
adding layers (Ref 12).

� A second strategy considers the entire cast-
ing, including the mushy, and liquid regions.
The liquid, mushy, and solid regions are
modeled as a continuum by adopting the
constitutive equations for the solid phase
(see the previous section “Solid-State Con-
stitutive Models”) for all regions by adjust-
ing material parameters such as K, m, E, n,
s0, and r according to temperature. For
example, liquid can be treated by setting
the strains to 0 when the temperature is
above the solidus temperature. This ensures
that stress development in the liquid phase
is suppressed. In the equilibrium equation,
Eq 2, acceleration terms are neglected, and
a small-strain analysis can be performed.
The primary unknowns are the displace-
ments, or displacement increments. This
popular approach can be used with structural
finite element codes, such as MARC (Ref
15) or ABAQUS (Ref 16), and with com-
mercial solidification codes or special-
purpose software, such as ALSIM (Ref 17)/
ALSPEN, (Ref 18), CASTS, (Ref 19),
CON2D (Ref 20, 21), Magmasoft (Ref 22),
and Procast (Ref 23, 24). It has been applied
successfully to simulate deformation and
residual stress in shape castings (Ref 25,
26), direct chill casting of aluminum (Ref
12, 17, 18, 27–29), and continuous casting
of steel (Ref 20, 30). Despite its efficiency,
this approach may suffer from several draw-
backs. First, it cannot properly account for
fluid flow and the volumetric shrinkage that
affects flow in the liquid pool, fluid feeding
into the mushy zone, and primary shrinkage
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depressions that affect casting shape. In
addition, incompressibility of the metal in
the liquid state is accounted for by increas-
ing Poisson’s ratio to close to 0.5 which
sometimes makes the solution prone to
numerical instability (Ref 31, 32).

� A third strategy has recently been developed
that addresses the above issues. It still simu-
lates the entire casting, but treats the mass
and momentum equations of the liquid and
mushy regions with a mixed velocity-pres-
sure formulation. The primary unknowns
are the velocity (time derivative of displace-
ment) and pressure fields, which make it
easier to impose the incompressibility con-
straint (see next section “Thermomechanical
Coupling”). Indeed, the velocity-pressure
formulation is also applied to the equilib-
rium of the solid regions to provide a single
continuum framework for the global numer-
ical solution. This strategy has been imple-
mented into codes dedicated to casting
analysis such as THERCAST (Ref 30, 33,
34) and VULCAN (Ref 35). If stress predic-
tion is not important so that elastic strains
can be ignored, then this formulation sim-
plifies to a standard fluid-flow analysis,
which is useful in the prediction of bulging
and shape in large-strain processes.

Example of Solid-State Constitutive Equa-
tions. Material property data are needed for the
specific alloy being modeled and in a form suit-
able for the constitutive equations just discussed.
This presents a significant challenge for quantita-
tive mechanical analysis, because measurements
are not presented in this form and only rarely
supply enough information on the conditions to
allow transformation to an alternate form. As an
example, the following elastic-viscoplastic con-
stitutive equation was developed for the austen-
ite phase of steel (Ref 36) by fitting constant
strain-rate tensile tests (Ref 37, 38) and con-
stant-load creep tests (Ref 39) to the form
required in Eq 10 to Eq 13.

_eeq ¼ f%C seq � s0

� �1=m
exp � 4:465� 104

T

� �
(Eq 16)

where
f%C ¼ 4:655� 104 þ 7:14� 10ð%CÞ þ 1:2� 104ð%CÞ2
s0 ¼ ð130:5� 5:128� 10�3T Þeeqf2
f2 ¼ �0:6289þ 1:114� 10�3T

1=m ¼ 8:132� 1:54� 10�3T

with T ½K�: �eq: �0½MPa�

This equation, and a similar one for delta ferrite,
have been implemented into the finite-element
codes CON2D (Ref 20) and THERCAST (Ref
40) and applied to investigate several problems
involving mechanical behavior during continuous
casting.
Elastic modulus is a crucial property that

decreases with increasing temperature. It is dif-
ficult to measure at the high temperatures
important to casting, owing to the susceptibility
of the material to creep and thermal strain

during a standard tensile test, which results in
excessively low values. Higher values are
obtained from high strain rate tests, such as
ultrasonic measurements (Ref 41) Elastic mod-
ulus measurements in steels near the solidus
temperature range from �1 GPa (145 ksi)
(Ref 42) to 44 GPa (6400 ksi) (Ref 43) with
typical modulus values �10 GPa (1450 ksi)
near the solidus (Ref 44–46).
The density needed to compute thermal

strain in Eq 4, 8, or 13 can be found from
a weighted average of the values of the differ-
ent solid and liquid phases, based on the local
phase fractions. For the example of plain low-
carbon steel, the following equations were com-
piled (Ref 20) based on solid data for ferrite
(a), austenite (g), and delta (d) (Ref 47, 48)
and liquid (l) measurements (Ref 49).

rðkg=m3Þ ¼ rafa þ rgfg þ rdfd þ rlfl

ra ¼ 7881� 0:324Tð	CÞ � 3� 10�5T ð	CÞ2

rg ¼
100½8106� 0:51T ð	CÞ�

½100� ð%CÞ�½1þ 0:008ð%CÞ�3

rd ¼
100½8011� 0:47T ð	CÞ�

½100� ð%CÞ�½1þ 0:013ð%CÞ�3
rl ¼ 7100� 73ð%CÞ � ½0:8� 0:09ð%CÞ�

½T ð	CÞ � 1550� ðEq 17Þ
Specialized experiments to measure mechan-

ical properties for use in computational models
will be an important trend for future research in
this field.

Thermomechanical Coupling

Coupling between the thermal and mechani-
cal analyses arises from several sources. First,
regarding the mechanical problem, besides the
strain rate due to thermal expansion and solidi-
fication shrinkage, the material parameters of
the preceding constitutive equations strongly
depend on temperature and phase fractions, as
shown in the previous section. Second, in the
heat-transfer problem, the thermal exchange
between the casting and the mold strongly
depends on local conditions such as the contact
pressure or the presence of a gap between them
(as a result of thermal expansion and solidifica-
tion shrinkage). This is illustrated in Fig. 1 and
discussed in this section.
Air Gap Formation: Conductive-Radiative

Modeling. In the presence of a gap between
the casting and the mold, resulting from their rel-
ative deformation, the heat transfer results from
concurrent conduction through the gas within
the gap and from radiation. The exchanged ther-
mal flux, qgap, can then be written:

qgap ¼ kgas
g

ðTc � TmÞ þ sðT 4
c � T 4

mÞ
1
ec
þ 1

em
� 1

(Eq 18)

with kgas (T) the thermal conductivity of the
gas, g the gap thickness, Tc and Tm the local
surface temperature of the casting and mold,
respectively, ec and em their gray-body emissiv-
ities, s the Stefan-Boltzmann constant. It is to
be noted that the conductive part of the flux
can be written in more detail to take into

account the presence of coating layers on the
mold surface: conduction through a medium of
thickness gcoat, of conductivity kcoat (T). It can
be seen that the first term tends to infinity as the
gap thickness tends to 0; this expresses a perfect
contact condition, Tc and Tm tending toward
a unique interface temperature. The reality is
somewhat different, showing always nonperfect
contact conditions. Therefore, the conductive
heat-exchange coefficient hcond = kgas/g should
be limited by a finite value h0, corresponding to
the “no-gap” situation, and depends on the
roughness of the casting surface. Specific exam-
ples of these gap heat-transfer laws are provided
elsewhere for continuous casting with oil lubri-
cation (Ref 13) and mold flux (Ref 50).
Effective Contact: Heat Transfer as a

Function of Contact Pressure. With effective
contact, the conductive heat flux increases with
the contact pressure according to a power law
(Ref 51). Still denoting h0 as the heat-exchange
coefficient corresponding to no gap and no con-
tact pressure, the interfacial heat flux is:

qcontact ¼ ðh0 þApBc ÞðTc � TmÞ (Eq 19)

with pc the contact pressure, A and B two param-
eters that depend on the materials, the presence
of coating or lubricating agent, the surface
roughness, and the temperature. The parameters
and possibly the laws governing their evolution
need to be determined experimentally.

Numerical Solution

The thermomechanical modeling equations
just presented must be solved numerically,
owing to the complex shape of the casting pro-
cess domain, and the highly nonlinear material
properties. The calculation depends greatly on
the numerical resolution of time and space.
Although finite-difference approaches are popu-
lar for heat-transfer, solidification, and fluid-
flow analyses, the finite element formulation is
usually preferred for the mechanical analysis,
owing to its historical advantages with unstruc-
tured meshes and accurate implicit solution of
the resulting simultaneous algebraic equations.
The latter are discussed below.

Finite Element Formulation and
Numerical Implementation

In the framework of the small-strain appro-
ach presented previously (see the section
“Implementation Issues”), having displace-
ments for primitive unknowns, the weak form
of the equilibrium equation, Eq 2, neglecting
inertia terms, is written as:

8u

ð
�

s : d«ðu
ÞdV �
ð
@�

T � u
dS

�
ð
�

rg � u
dV ¼ 0 ðEq 20Þ

where T is the external stress vector. The vector
test functions u
 can be seen as virtual displace-
ments in a statement of virtual work.

Modeling of Stress, Distortion, and Hot Tearing/3

5115/4G/a0005238



If the third strategy described in the section
“Implementation Issues” is adopted, with veloc-
ity and pressure as primary unknown variables,
the weak form of the momentum equation
(Eq 2) is written as (Ref 52):

8v

ð
�

s : _«ðv
ÞdV �
ð
�

pr � v
dV

�
ð
@�

T � v
dS �
ð
�

rg � v
dV

þ
ð
�

r
dv

dt
� v
dV ¼ 0

8p

ð
�

p
tr _«indV ¼ 0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(Eq 21)

The first equation contains vector test func-
tions v*, which can be seen as virtual velocities
in a statement of virtual power. Unlike Eq 20,
the pressure p is a primary variable, and only
the deviatoric part of the constitutive equations
is involved (to determine the stress deviator s).
This is why the second equation is needed,
which consists of a weak form of the incom-
pressibility of inelastic deformations.
Equations 20 and 21 are spatially discretized

using the standard finite-element method, as
explained in detail in many references (Ref
52). Combined with time discretization using
finite differences, this leads to a set of nonlinear
equations to be solved at each time increment.
In the context of the displacement strategy,
Eq 20, this leads to:

RðUÞ ¼ 0 (Eq 22)

where R is the vector of the nodal equilibrium
residues (number of components: 3 � number
of nodes, in three dimensions), and U is the
vector of nodal incremental displacements
(same size).
Adopting the velocity-pressure strategy,

Eq 21 leads to a set of nonlinear equations:

R0ðV;PÞ ¼ 0 (Eq 23)

where R0 is the vector of the nodal residues
(number of components: 4 � number of nodes,

in dimension 3), V is the vector of nodal veloc-
ities (size: 3 � number of nodes), and P is the
vector of nodal pressures (size: number of
nodes).
The global finite-element systems Eq 22 or

Eq 23 are usually solved using a full or modi-
fied Newton-Raphson method (Ref 16, 31),
which iterates to minimize the norm of the res-
idue vectors R or R0. Alternatively, explicit
methods may be employed at this global level.
At the local (finite element) level, an algo-

rithm is also required to integrate the constitu-
tive equations, when they depend on strain
rate or strain. When the constitutive equations
are highly nonlinear, an implicit algorithm is
useful to perform time integration at each
Gauss point to provide better estimates of
inelastic strain at the local level (Ref 53–55).

Boundary Conditions: Modeling of
Contact Conditions. Multidomain
Approaches

At the interface between the solidifying
material and the mold, a contact condition is
required to prevent penetration of the shell into
the mold, while allowing shrinkage of the shell
away from the mold to create an interfacial gap:

s n � n � 0

g � 0

ðsn � nÞg ¼ 0

8<
:

(Eq 24)

where g is the local interface gap width (positive
when air gap exists effectively, as in section 0)
and n is the local outward unit normal to the
part. Equation 24 can be satisfied with a penalty
condition, which consists of applying a normal
stress vector T proportional to the penetration
depth (if any) via a penalty constant wp:
T ¼ sn ¼ ��p �gh in (Eq 25)

Here again, the brackets denote the positive
part; a repulsive stress is applied only if g is
negative (penetration). Different methods of
local adaptation of the penalty coefficient wp

have been developed, including the augmented
Lagrangian method (Ref 56). More complex
and computationally expensive methods, such
as the use of Lagrange multipliers may also be
used (Ref 57).
The possible tangential friction effects

between part and mold can be taken into
account by a friction law, such as a Coulomb
model for instance. In this case, the previous
stress vector has a tangential component, Tt,
given by:

Tt ¼ �mfpc
1

v� vmoldk k ðv� vmoldÞ (Eq 26)

where pc ¼ �sn ¼ �sn � n is the contact pres-
sure, and mf the friction coefficient.
The previous approach can be extended to the

multidomain context to account for the deforma-
tion of mold components. The local stress vec-
tors calculated by Eq 25 can be applied onto
the surface of the mold, contributing then to its
deformation. For most casting processes, the
mechanical interaction between the cast product
and the mold is sufficiently slow (i.e., its charac-
teristic time remains significant with respect to
the process time) to permit a staggered scheme
within each time increment: the mechanical
problem is successively solved in the cast prod-
uct and in the different mold components.
A global updating of the different configurations
is then performed at the end of the time incre-
ment. This simple approach gives access to a pre-
diction of the local air gap size g, or alternatively
of the local contact pressure pc, that is used in
the expressions of the heat-transfer coefficient,
according to Eq 18 and 19 (Ref 58).

Treatment of the Regions in the Solid,
Mushy, and Liquid States

Solidified Regions: Lagrangian Formula-
tion. In casting processes, the solidified regions
generally encounter small deformations. It is
thus natural to embed the finite element domain
into the material, with each node of the compu-
tational grid corresponding with the same solid
particle during its displacement. The boundary
of the mesh corresponds then to the surface of
the casting. This method, called Lagrangian
formulation, provides the best accuracy when
computing the gap forming between the solidi-
fied material and the mold. It is also the more
reliable and convenient method for time integra-
tion of highly nonlinear constitutive equations,
such as elastic-(visco)plastic laws presented in
the section “Solid-State Constitutive Models.”
Mushy and liquid regions: ALE modeling.

When the mushy and liquid regions are mod-
eled in the same domain as the solid (see the
discussion in the section “Implementation
Issues”), they are often subjected to large
displacements and strains arising from solidifi-
cation shrinkage, buoyancy, or forced convec-
tion. Similar difficulties are generated in
casting processes such as squeeze casting,
where the entire domain is highly deformed.
In these cases, a Lagrangian formulation would

Heat-exchange coefficient
h (W/m2•K)

Gap width g (m)

Effective gapEffective contact

Contact pressure pc (Pa)

h0

h = h0 + ApC
B h =

kgas

g 1 1
−1+

+

εc εm

s (Tc
2 + Tm

2 )(Tc + Tm)

Fig. 1 Modeling of the local heat transfer coefficient in the gap and effective contact situations
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demand frequent remeshings to avoid mesh
degeneracy, which is both computationally
costly and detrimental to the accuracy of the
modeling. It is then preferable to use a so-called
Arbitrary Lagrangian Eulerian formulation
(ALE). In a Eulerian formulation, material
moves through the computational grid, which
remains stationary in the “laboratory” frame of
reference. In the ALE formulation, the updating
of the mesh is partially independent of the
velocity of the material particles to maintain
the quality of the computational grid. Several
methods can be used, including the popular
“barycentering” technique, which keeps each
node at the geometrical centroid of a set of its
neighbors. This method involves significant
extra complexity to account for the advection
of material through the domain, and the state
variables such as temperature and inelastic
strain must be updated according to the relative
velocity between the mesh and the particles. In
doing this, some surface constraints must be
enforced to ensure mass conservation, expres-
sing that the fluxes of mesh velocity and of
fluid particle velocity through the surface of
the mesh should remain identical. A review on
the ALE method in solidification modeling is
available, together with some details on its
application (Ref 33).

Thermomechanical Coupling

Because of the interdependency of the ther-
mal and mechanical analyses, as presented in
the section “Thermomechanical Coupling,”
their coupling should be taken into account all
throughout the cooling process. In practice,
the cooling time is decomposed into time incre-
ments, each increment requiring the solution of
two problems: the energy conservation and the
momentum conservation. With the highly non-
linear elastic-viscoplastic constitutive equations
typical of solidifying metals, the incremental
steps required for the mechanical analysis to
converge are generally much smaller than those
for the thermal analysis. Thus, these two analy-
ses are generally performed in succession and
only once per time increment. However, in the
case of very rapid cooling, these solutions
might preferably be performed together (includ-
ing thermal and mechanical unknowns in a sin-
gle set of nonlinear equations), or else

separately but iteratively until convergence at
each time increment, otherwise the time step
has to be dramatically reduced.

Model Validation

Model validation with both analytical solu-
tions and experiments is a crucial step in any
computational analysis, and thermomechanical
modeling is no exception. Weiner and Boley
(Ref 59) derived an analytical solution for uni-
directional solidification of an unconstrained
plate with a unique solidification temperature,
an elastic perfectly plastic constitutive law and
constant properties. The plate is subjected to
sudden surface quench from a uniform initial
temperature to a constant mold temperature.
This benchmark problem is ideal for estimat-

ing the discretization errors of computational
thermal-stress models, as it can be solved with
a simple mesh consisting of one row elements,
as shown in Fig. 2. Numerical predictions
should match with acceptable precision using
the same element type and mesh refinement
planned for the real problem. For example, the
solidification stress analysis code, CON2D
(Ref 20) and the commercial code ABAQUS
were applied for typical conditions of steel cast-
ing (Ref 21).
Figures 3 and 4 compare the temperature and

stress profiles in the plate at two times. The
temperature profile through the solidifying shell
is almost linear. Because the interior cools rela-
tive to the fixed surface temperature, its shrink-
age generates internal tensile stress, which
induces compressive stress at the surface. With
no applied external pressure, the average stress
through the thickness must naturally equal 0,

and stress must decrease to 0 in the liquid.
Stresses and strains in both transverse direc-
tions are equal for this symmetrical problem.
The close agreement demonstrates that both
computational models are numerically consis-
tent and have an acceptable mesh resolution.
Comparison with experimental measurements
is also required to validate that the modeling
assumptions and input data are reasonable.

Example Applications

Sand Casting of Braking Disks. The finite
element software THERCAST for thermome-
chanical analysis of solidification (Ref 34) has
been used in the automotive industry to predict
distortion of gray-iron braking discs cast in
sand molds (Ref 60). Particular attention has
been paid to the interaction between the defor-
mation of internal sand cores and the cast parts.
This demands a global coupled thermomechani-
cal simulation, as presented previously. Figure 5
illustrates the discretization of the different
domains involved in the calculation. The actual
cooling scenario has been simulated: cooling in
mold for 45 min, shakeout, and air cooling for
15 min. Figure 6 shows the temperature evolu-
tion at different points in a horizontal cross sec-
tion at midheight in the disc, revealing:
solidification after 2 min, and solid-state phase
change after 20 min. The calculated deforma-
tion of the core blades shows thermal buckling
caused by the very high temperature, and con-
straint of their dilatation, as shown in Fig. 7.
This deformation causes a difference in thick-
ness between the two braking tracks of the disc.
Such a defect needs heavy and costly machin-
ing operations to produce quality parts. Instead,

Molten metal

z

x

y

Fig. 2 One-dimensional slice domain for modeling
solidifying plate

Fig. 3 Temperatures through solidifying plate at different times comparing analytical solution and numerical
predictions
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process simulation allows the manufacturer to
test alternative geometries and process condi-
tions in order to minimize the defect.
Similar thermomechanical calculations have

been made for plain discs, leading to compari-
sons with residual stress measurements bymeans
of neutrons and x-ray diffraction (Ref 61). As
shown in Fig. 8, calculations are consistent with
measurements to within 10 MPa (1.5 ksi).
Continuous Casting of Steel Slabs. Ther-

momechanical simulations are used by steel-
makers to analyze stresses and strains both in
the mold and in the secondary cooling zone

below. One goal is to quantify the bulging of
the solidified crust between the supporting rolls
that is responsible for the tensile stress state in
the mushy core, which in turn induces internal
cracks and macrosegregation (Ref 62, 63).
Two- and three-dimensional finite element
models have been recently developed, for the
entire length of the caster using THERCAST,
as described elsewhere (Ref 40, 64). The con-
stitutive models were presented in the section
“Governing Equations.” Contact with support-
ing rolls is simulated with the penalty formula-
tion discussed in the section “Boundary

Conditions: Modeling of Contact Conditions.
Multidomain Approaches” adapting penalty
coefficients for the different rolls continuously
to control numerical penetration of the strand.
Figure 9 shows results for a vertical-curved

machine (strand thickness 0.22 m, or 0.75 ft,
casting speed 0.9 m/min, or 3 ft/min, material
Fe-0.06wt%C) at around 11 m (36 ft) below
the meniscus. The pressure distribution reveals
a double alternation of compressive and depres-
sive zones. First, the strand surface is in a com-
pressive state under the rolls where the pressure
reaches its maximum, 36 MPa (5 ksi). Con-
versely, it is in a depressive (tensile) state
between rolls, where the pressure is minimum
(�9 MPa, or �1 ksi). Near the solidification
front (i.e., close to the solidus isotherm), the
stress alternates between tension (negative pres-
sure of about �2 MPa, or �0.3 ksi) beneath the
rolls and compression in between (2–3 MPa, or
0.3–0.4 ksi). These results agree with previous
structural analyses of the deformation of the
solidified shell between rolls, such as those car-
ried out in static conditions by Wünnenberg and
Huchingen (Ref 65), Miyazawa and Schwerdt-
feger (Ref 62), or by Kajitani et al. (Ref 66)
on small slab sections moving downstream
between rolls and submitted to the metallurgi-
cal pressure onto the solidification front.
The influence of process parameters on the

thermomechanical state of the strand can then
be studied using such numerical models. An
example is given in Fig. 10, presenting the sen-
sitivity of bulging to the casting speed. It can
also be seen that bulging predictions are sensi-
tive to the roll pitch, a larger pitch between
two sets of rolls inducing an increased bulging.
These numerical simulations can then be used
to study possible modifications in the design
of continuous casters, such as the replacement
of large rolls by smaller ones to reduce the
pitch and the associated bulging (Ref 67).

Fig. 4 Transverse (Y and Z ) stress through solidifying plate at different times comparing analytical solution and
numerical predictions

Fig. 5 Finite element meshes of the different domains: part, core, and two half molds
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Fig. 6 Temperature evolution in the part at different points located in the indicated section

Fig. 7 Deformation of core blades in a radial section, after a few seconds of cooling. On the left, displacements are magnified (100�). The temperature distribution is
superimposed. On the right, the difference in thickness between the two braking tracks is shown.

70 MPa
(10 ksi)

−40 ± 20 MPa
(−6 ± 3 ksi)

Measured σθθ

Calculated σθθ 10 MPa
(1.5 ksi) Calculated σrr

Measured σrr
20 ± 22 MPa

(3 ± 3 ksi)
−25 ± 20 MPa

(−4 ± 3 ksi)

−10 MPa
(−1.5 ksi)

60 ± 8 MPa
(9 ± 1 ksi)

−30 MPa
(−4 ksi)

Fig. 8 Residual hoop stresses (left) and radial stresses (right) in a radial section on as-cast plain discs made of gray iron. Top line, calculated values; bottom line, measured values
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Fig. 9 Predictions in the middle of the secondary cooling zone, about 11 m (36 ft) below the meniscus. The finite element mesh, (top left) features a fine band of 20 mm (0.8 in.).
The pressure distribution (right) reveals alternating stress, including tension near the solidification front (the mushy zone is materialized by 20 lines separated by an interval

Dg
l = 0.05).

Fig. 10 Slab bulging calculated at two different casting speeds: 0.9 and 1.2 m/min (3 and 4 ft/min). The slab bulging increases with the casting speed. Source: Ref 67
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Hot-Tearing Analysis

Hot-tear crack formation is one of the most
important consequences of stress during solidifi-
cation. Hot tearing is caused by a combination of
tensile stress and metallurgical embrittlement. It
occurs at temperatures near the solidus when
strain concentrates within the interdendritic liq-
uid films, causing separation of the dendrites
and intergranular cracks at very small strains
(on the order of 1%). This complex phenomenon
depends on the ability of liquid to flow through
the dendritic structure to feed the volumetric
shrinkage, the strength of the surrounding den-
dritic skeleton, the grain size and shape, the
nucleation of supersaturated gas into pores or
crack surfaces, the segregation of solute impuri-
ties, and the formation of interfering solid precip-
itates. The subsequent refilling of hot tears with
segregated liquid alloy can cause internal defects
that are just as serious as exposed surface cracks.
The hot tearing of aluminum alloys is reviewed
elsewhere (Ref 68). Hot-tearing phenomena are
too complex, too small-scale, and insufficiently
understood tomodel in detail, so several different
criteria have been developed to predict hot tears
from the results of a thermomechanical analysis.
Thermal Analysis Criteria. Casting condi-

tions that produce faster solidification and
alloys with wider freezing ranges are more
prone to hot tears. Thus, many criteria are solely
based on thermal analysis. Clyne and Davies
simply compare the local time spent between
two critical solid fractions gs1 and gs2 (typically
0.9 and 0.99, respectively), with the total local
solidification time (or a reference solidification
time) (Ref 69). The “hot-cracking susceptibility”
is defined as:

HCSClyne ¼ t0:99 � t0:90
t0:90 � t0:40

(Eq 27)

Classical Mechanics Criteria. Criteria
based on classical mechanics often assume
cracks will form when a critical stress is
exceeded, and they are popular for predicting
cracks at lower temperatures (Ref 70–73). This
critical stress depends greatly on the local tem-
perature and strain rate. Its accuracy relies on
measurements, such as the submerged split-chill
tensile test for hot tearing (Ref 74–76).
Measurements often correlate hot-tear forma-

tion with the accumulation of a critical level of
mechanical strain while applying tensile load-
ing within a critical solid fraction where liquid
feeding is difficult. This has formed the basis
for many hot-tearing criteria. That of Yamanaka
et al. (Ref 77) accumulates inelastic deforma-
tion over a brittleness temperature range, which
is defined, for example as gs 2 ½0:85; 0:99� for
a Fe-0.15wt%C steel grade. The local condition
for fracture initiation is then:Xgs2

gs1
�ein � ecr (Eq 28)

in which the critical strain ecr is 1.6% at a typi-
cal strain rate of 3 � 10�4 s�1. Careful mea-
surements during bending of solidifying steel
ingots have revealed critical strains ranging

from 1 to 3.8% (Ref 77, 78). The lowest values
were found at high strain rate and in crack-sen-
sitive grades (e.g., high-sulfur peritectic steel)
(Ref 77). In aluminum-rich Al-Cu alloys, criti-
cal strains were reported from 0.09 to 1.6%
and were relatively independent of strain rate
(Ref 79). Tensile stress is also a requirement
for hot-tear formation (Ref 77). The maximum
tensile stress occurs just before formation of
a critical flaw (Ref 79).
The critical strain decreases with increasing

strain rate, presumably because less time is
available for liquid feeding, and also decreases
for alloys with wider freezing ranges. Won et al.
(Ref 80) suggested the following empirical
equation for the critical strain in steel, based
on fitting measurements from many bend tests:

ecr ¼ 0:02821

_e0:3131�T 0:8638
B

(Eq 29)

where _e is the strain rate and DTB is the brittle
temperature range, defined between the temper-
atures corresponding to solid fractions of 0.9
and 0.99.
Mechanistically Based Criteria. More

mechanistically based hot-tearing criteria
include more of the local physical phenomena
that give rise to hot tears. Feurer (Ref 81) and
more recently Rappaz et al. (Ref 82) have pro-
posed that hot tears form when the local inter-
dendritic liquid feeding rate is not sufficient to
balance the rate of tensile strain increase across
the mushy zone. The criterion of Rappaz et al.
predicts fracture when the strain rate exceeds
a limit value that allows pore cavitation to sep-
arate the residual liquid film between the
dendrites:

_e � 1

R

�2
2 rTk k
180ml

r
L

r
S

ðpm � pCÞ
	

�vT
r

S
� r

L

r
S

H



ðEq 30Þ

in which ml is the dynamic viscosity of the liq-
uid phase, l2 is the secondary dendrite arm
spacing, pm is the local pressure in the liquid
ahead of the mushy zone, pC is the cavitation
pressure, and vT is the velocity of the solidifica-
tion front. The quantities R and H depend on
the solidification path of the alloy:

R ¼
ðT1

T2

g2sF ðT Þ
gl3

dT

H ¼
ðT1

T2

g2s
g2l

dT

F ðT Þ ¼ 1

rTk k
ðT
T2

gsdT ðEq 31Þ
where the integration limits are calibration
parameters that also have physical meaning
(Ref 83). The upper limit T1 may be the liquidus
or the coherency temperature, while the lower
limit T2 typically is within the solid fraction
range of 0.95 to 0.99 (Ref 84).
Case Study: Billet Casting Speed Optimi-

zation. A Lagrangian model of temperature, dis-
tortion, strain, stress, hot tearing has been applied
to predict the maximum speed for continuous
casting of steel billets without forming off-corner

internal cracks. The two-dimensional transient
finite-element thermomechanicalmodel,CON2D
(Ref 20, 21), has been used to track a transverse
slice through the solidifying steel strand as it
moves downward at the casting speed to reveal
the entire three-dimensional stress state. The
two-dimensional assumption produces reasonable
temperature predictions because axial (z-direc-
tion) conduction is negligible relative to axial
advection (Ref 50). In-plane mechanical predic-
tions are also reasonable because bulging effects
are small and the undiscretized casting direction
is modeled with the appropriate condition of gen-
eralized plain strain. Other applications with this
model include the prediction of ideal taper of the
mold walls (Ref 85) and quantifying the effect of
steel grade on oscillation mark severity during
level fluctuations (Ref 86).
The model domain is an L-shaped region of

a two-dimensional transverse section, shown
in Fig. 11. Removing the central liquid region
saves computation and lessens stability prob-
lems related to element “locking.” Physically,
this “trick” is important in two-dimensional
domains because it allows the liquid volume
to change without generating stress, which
mimics the effect of fluid flow into and out of
the domain that occurs in the actual open-
topped casting process. Simulations start at the
meniscus, 100 mm (4 in.) below the mold top,
and extend through the 800 mm (32 in.) long
mold and below, for a caster with no submold
support. The instantaneous heat flux, given in
Eq 32, was based on plant measurements (Ref
45). It was assumed to be uniform around the
perimeter of the billet surface in order to simu-
late ideal taper and perfect contact between the
shell and mold. Below the mold, the billet

Fig. 11 Model domain
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surface temperature was kept constant at its cir-
cumferential profile at mold exit. This elimi-
nates the effect of spray cooling practice
imperfections on submold reheating or cooling
and the associated complication for the stress/
strain development. A typical plain carbon steel
was studied (0.27% 	C, 1.52% 	Mn, 0.34% 	Si)
with 1500.7 	C (2733 	F) liquidus temperature,
and 1411.8 	C (2573 	F) solidus temperature.
Constitutive equation and properties are given
in the sections “Solid-State Constitutive Models”
and “Example of Solid-State Constitutive
Equations.”

qðMW=m2Þ ¼ 5� 0:2444tðsÞ t � 1:0 s

4:7556tðsÞ�0:504 t > 1:0 s

�
(Eq 32)

Sample results are presented here for one-
quarter of a 120 mm2s (0.2 in.2) billet cast at
speeds of 2.0 and 5.0 m/min (6.5 to 16.5 ft/s).
The latter is the critical speed at which hot-tear
crack failure of the shell is just predicted to
occur. The temperature and axial (z) stress dis-
tributions in a typical section through the wide
face of the steel shell cast at 2.0 m/min (6.5 ft/s)
are shown in Fig. 12 and 13 at four different
times during cooling in the mold. Unlike
the analytical solution in Fig. 3, the surface tem-
perature drops as time progresses. The correspon-
ding stress distributions are qualitatively similar
to the analytical solution (Fig. 4). The stresses
increase with time, however, as solidification
progresses. The realistic constitutive equations
produce a large region of tension near the solidi-
fication front. The magnitude of these stresses
(as well as the corresponding strains) is not
predicted to be enough to cause hot tearing in
the mold, however. The results from two differ-
ent codes reasonably match, demonstrating that
the formulations are accurately implemented,
convergence has been achieved, and the mesh
and time-step refinement are sufficient.
Figure 14(a) shows the distorted temperature

contours near the strand corner at 200 mm
(8 in.) below the mold exit, for a casting speed
of 5.0 m/min (16.5 ft/min). The corner region is
coldest, owing to two-dimensional cooling. The
shell becomes hotter and thinner with increas-
ing casting speed, owing to less time in the
mold. This weakens the shell, allowing it to
bulge more under the ferrostatic pressure below
the mold.
Figure 14(b) shows contours of “hoop” stress

constructed by taking the stress component act-
ing perpendicular to the dendrite growth direc-
tion, which simplifies to sx in the lower right
portion of the domain and sy in the upper left
portion. High values appear at the off-corner
subsurface region, due to a hinging effect that
the ferrostatic pressure over the entire face
exerts around the corner. This bends the shell
around the corner and generates high subsur-
face tensile stress at the weak solidification
front in the off-corner subsurface location. This
tensile stress peak increases slightly and moves
toward the surface at higher casting speed.
Stress concentration is less, and the surface
hoop stress is compressive at the lower casting

speed. This indicates no possibility of surface
cracking. However, tensile surface hoop stress
is generated below the mold at high speed in
Fig. 14(b) at the face center due to excessive
bulging. This tensile stress, and the accompa-
nying hot-tear strain, might contribute to longi-
tudinal cracks that penetrate the surface.
Hot tearing was predicted using the criterion

in Eq 28 with the critical strain given in Eq 29.
Inelastic strain was accumulated for the compo-
nent oriented normal to the dendrite growth

direction, because that is the weakest direction
and corresponds to the measurements used to
obtain Eq 29. Figure 14(c) shows contours of
hot-tear strain in the hoop direction. The high-
est values appear at the off-corner subsurface
region in the hoop direction. Moreover, signifi-
cantly higher values are found at higher casting
speeds. For this particular example, hot-tear
strain exceeds the threshold at 12 nodes, all
located near the off-corner subsurface region.
This is caused by the hinging mechanism
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around the corner. No nodes fail at the center
surface, in spite of the high tensile stress there.
The predicted hot-tearing region matches the
location of off-corner longitudinal cracks
observed in sections through real solidifying
shells, such as the one pictured in Fig. 15. The
bulged shape is also similar.
Results from many computations were used

to find the critical speed to avoid hot-tear
cracks as a function of section size and working
mold length, presented in Fig. 16 (Ref 46).
These predictions slightly exceed plant prac-
tice, which is generally chosen by empirical
trial and error (Ref 87). This suggests that plant
conditions such as mold taper are less than
ideal, that other factors limit casting speed, or
those speeds in practice could be increased.
The qualitative trends are the same.
This quantitative model of hot tearing pro-

vides many useful insights into the continuous
casting process. Larger section sizes are more
susceptible to bending around the corner and
so have a lower critical casting speed, resulting
in less productivity increase than expected. The
trend toward longer molds over the past three
decades enables a higher casting speed without
cracks by producing a thicker, stronger shell at
mold exit.

Conclusions

Mechanical analysis of casting processes is
growing in sophistication, accuracy, and phe-
nomena incorporated. Quantitative predictions
of temperature, deformation, strain, stress, and
hot tearing in real casting processes are becom-
ing possible. Computations are still hampered
by the computational speed and limits of mesh
resolution, especially for realistic three-dimen-
sional geometries and defect analysis.
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